
NASA
Reference
Publication
1277

1992

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

NASA Wallops Flight
Air-Sea Interaction

Facility

Steven R. Long

Wallops Flight Facility

Wallops Island, Virginia

Facility
Research





-,Ot_lvatlmal Sdace Brach-- Interaction
Research
Facility

iii

PR£CEDING PAGE BLANK NOT FILMED





TABLE OF CONTENTS

1. INTRODUCTION

2. RATIONALE

3. HISTORY 2

4. THE PHYSICAL DESCRIPTION OF NASIRF 3

5. INSTRUMENTATION 4

6. SPECIAL TEST CAPABILITY 9

7. EXAMPLES OF RESULTS 9

8. REFERENCES 17

9. LIST OF FIGURES 18

10. ACKNOWLEDGEMENTS 19

11. INVITATION 19

PI_C,E_t,,_ P'AG,E BLA,"_ NOT FILMED





1. INTRODUCTION

This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA's

Wallops Flight Facility, part of Goddard Space Flight Center, and located on Virginia's Eastern

Shore near Chincoteague, VA. The purpose of this publication is to provide background

information on the research facility itself, including capabilities, available instrumentation, the

types of experiments already done, those ongoing, and future plans. But first, let's consider why

this unique facility is there.

2. RATIONALE

Air-sea interaction processes are complicated phenomena. The difficulty lies in the fact that all

the motions are inter-related in a way that is highly nonlinear. As an example, take the

well-posed problem of wind wave generation that has been the goal for generations of

oceanographers and fluid dynamists: the solution is still elusive. To solve this problem, one must

know the nonlinear wave-wave interactions, the details of momentum and energy fluxes, and the

dissipation mechanisms of the waves. Thus the well-posed problem encompasses a host of subsets

of inter-related problems, each of which has its own impasse, and the sum of them makes the

total problem intractable. It is clear to all investigators that in order to make progress, one would

have to break up the problem into single dynamic components. It is perfectly possible that the

sum of the components can be different from the whole. However, we can gain a certain

understanding of the complicated processes involved, and this is our goal.

While much can be learned from field observations from ships, buoys, and aircraft, the many

processes that participate in air-sea interaction also need to be studied under controlled conditions

in the laboratory. While laboratory experiments can not simulate open ocean conditions,

participant processes can be modeled and better understood.

The well-posed component problems, once defined, can be solved either theoretically or

experimentally. The theoretical solutions invariably involve simplifying assumptions, and the

experimental solutions typically have unexpected complications. This is especially true for field

experiments, which are by definition the ultimate tests of the truth. But the uncontrollable

environmental conditions almost always make the results short of being complete ( not the

desired conditions, conditions too severe for safety, conditions not steady enough for a complete

test set, etc.). Limited by the prohibitive cost of a full field test, laboratory experiments offer

simple and inexpensive alternatives with the understood limitations on the dynamic variability.

It is fully appreciated that the laboratory conditions cannot simulate the natural environment in

total. It is, however, also realized that if a problem is clearly defined and its dynamic processes

identified, a laboratory experiment will be the most cost-effective way to produce a reasonable

answer as a guide for full field verification. The laboratory experiments are the intermediate steps

toward the full solution of the problem. It is with this understanding that the NASA Air-Sea

Interaction R._esearch Facility (NASIRF) was conceived and constructed.



3. HISTORY

The construction of the NASA Air-Sea Interaction Research Facility (NASIRF) was initiated in

1975 to provide basic scientific research and support for the GEOS-3 and SEASAT-1 satellite

remote sensing projects. Primary objectives are to use the laboratory to test theoretical results and

to collect empirical data for the development of remote sensing techniques, in support of

microwave remote sensor technique development for air-sea interaction studies. With this goal
in mind, the

most important surface phenomena needing research are the variations of the short gravity or the

gravity-capillary waves under the actions of wind and ambient currents. These short waves are

the most amenable ones to laboratory studies. Therefore, the interactions of wind, waves, and

currents are central processes to be studied.

The main wind-wave-current research tank was designed by John van Overeem together with

Norden E. Huang and Steven R. Long. The construction started at Wallops in early 1975 under

the direction of Ken Calvert, assisted by Cris Lankford, Ed White, and others from the Wallops

machine shop. It was finished by the beginning of 1977, when the first experiments were done.

The initial instrumentation and data processing systems were designed around the

Hewlett-Packard 9825 desktop calculators then available, and was developed and interfaced by

Steven R. Long with the assistance of Bob Snyder. The first test result based on data from the

new facility on the probability structure of the wind wave surface was published in 1980, using

a capacitance-type wave probe of a new self-zeroing design developed and constructed at Wallops

by Bob Snyder. The first hydraulic wave generator from Chant Engineering was designed and

installed by Dave Moltedo. The second identical unit for waves in the opposite direction was

installed by Granville Taylor. The next step in instrumentation expansion was built around the

4 channel HP spectrum analyzer, the 5451C, based on the early HP1000E mini-computers, and

developed by Steven R. Long with the assistance of Larry F. Bliven. With the development of

the mini-computer, we were able to expand to 16 data input channels, and a vastly more flexible

software environment by moving to the HP1000F mini-computer system, developed by Larry F.

Bliven with the assistance of Steven R. Long. The final step to our current capability came full

circle back to the desktop with the rise of the personal computer and its associated hardware and

software. Using multiple PC's, the present automated capability for A/D data acquisition, control,

timing, archiving, computing, and graphical output was developed by Steven R. Long.

A second square tank was constructed in 1989 by Empire Fiberglass Co., based on a design by

Norden E. Huang, for directional wave-current interaction studies. It was installed by the Wallops

machine shop crew led by Bill Herz, and fully plumbed by Brett Mariner and Eddie Procaccio.

Limited by the facility funds, the tank has not yet been fully instrumented, but is being added

to and gradually developed in annual increments.
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4. THE PHYSICAL DESCRIPTION OF NASIRF

The main wind-wave-current interaction tank is shown in figure 1. The main test section is 60

ft (18.29 m) in length, 4 ft (1.22 m) in height, and 3 ft (0.91 m) in width. Its operational water

depth is 2.5 ft (0.76m) with 1.5 ft (0.45 m) remaining for air flow.

The wind is generated by a Trane suction fan located at one end of the tank and driven by a 25

HP motor. An electronic control board ( U. S. Varidyne 2000 Inverter ) has been installed in

1991 to control on/off, the speed, and the direction of the fan blades digitally through a personal

computer (PC), so that any steady wind velocity or variation between 0 and 20 m/s at a reference

height of 0.1 m above the mean water surface can be programmed.

Water current can be generated within the tank by a pump driven by a 15 HP motor. The

maximum current of 6000 gal/min (378.1 1/sec) can be recirculated through a 16 in (0.41 m)

diameter pipe connecting the two surge tanks at either end of the tank. The pump is controlled

by an identical electronic control board as is used for the fan. Steady current or any variation up

to 0.5 m/s can be generated in either direction in the test section by PC control. Spatial current

gradients in the tank over selected parts of the test section can be generated by installing a false
bottom.

Waves can be generated by a hydraulically driven paddle at either end of the tank. The hydraulic

drive system was fabricated by Chant Engineering, Inc. This wave paddle can be fully

programmed through a personal computer (PC) to generate waves of any frequency and amplitude

compatible to the test section and generating machinery. Since the shallow water limitation of

the tank is for waves of 1.5 m in length, the frequency is limited to the corresponding wave

frequency of about 1.0 Hz. The amplitude is limited by the power rating of the hydraulic driving

system, which in turn limits the high frequency for the paddle motion to 10 Hz with small

amplitude, with amplitude increasing as frequency decreases, giving an amplitude of about 0.05
m at 2Hz.

A smaller tank just being completed consists of a test section of 8 ft x 8 ft ( 2.44 m) with an

operational water depth of 1 ft (0.3048 m). It is equipted for variable currents running diagonally

within the test section between two large reservoirs, as shown in figure 2. This smaller tank will

permit the study of wave-current interactions that occur at an angle.
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uniqueadvantagesis theMercuryComputerMC-3200ATadd-incardusingM-Shell softwareby
Applied CoherentTechnologyfor complete,programmableimageprocessing.Additionally, an
Hitachi andPanasonicVCRcanrecordanexperimentcontinuouslyfor laterframegrabbingand
processing.Theseitemsarediscussedin moredetail in a following section.

B. RCA ProWonderCamCorder:This is availableto makeanoverall visualandvoicerecord
of any experimentin thefacility or in the field.

8. Analog to Digital and Digital to Analog Conversion:

Data Translation and Keithley cards are used within the personal computers to digitize incoming

data and to provide the outgoing control for the various equipment used by the facility. Each card

has 16 analog to digital conversion channels, 2 digital to analog conversion channels ( each with

a maximum of +/- 10 v DC ), and 2 16-bit digital I/O ports. The facility's maximum input data

channel capacity is limited only by the number of A/D cards and computers available.

5.2 Recording Devices

1. Analog (FM) Data Recorders:

A. Honeywell 14 Ch.: Using 1 inch magnetic Tape, this recorder can take up to 14 channels

of data, or 13 channels of data while using the 14th for a sync signal to guarantee the maximum

accuracy in speed control on playback.

B. Hewlett-Packard 4 Ch.: Using 1/4 inch magnetic tape, this recorder can take up to 4 data

channels.

C. TEAC 7 Ch.: Using instrumentation-grade cassette tapes, this recorder can take up to 7

channels of data, and operates off a dc voltage supply for in-lab use, or off a battery supply for
field use.

2. Video Recorders:

A. Hitachi: A Hitachi model HS-423UR S-VHS 4 head VCR is available to record video

images and/or sound in standard or S-mode.

B. Panasonic: A Panasonic model 7600 professional editing VCR is available to record or edit

video images and/or sound in standard mode. Additionally, a BCD video controller is available

to control all functions of this VCR through the imagine processing PC, allowing fully automated

image processing to be developed in the Pascal language, or in real time from the PC keyboard

using the BCD command set.

3. Digital Data Recording and Archiving: A Digi-Data model 2010 9-track digital magnetic tape

recorder is used to archive raw data, programs, images, and results that have been previously
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acquiredby the personalcomputers(PC) asdigitized dataor processedresults. It canalso be
usedto exchangelargeamountsof databetweenthelaboratory'spersonalcomputers,or using
the Tape View softwaredescribedin a following section,read or write data in any standard
magnetictapeformat, to allow datato beexchangedbetweenthe facility andothercomputers.

5.3 Data Processing

A variety of data processing is already available, and other specialized approaches can be easily

developed within the following environments.

1. ASYST: A threaded subroutine language for the PC, allowing words to be defined in terms

of ASYST library words, while these new words can then be used within further new words until

the final program is a single word. With this concept, A/D and D/A can be easily controlled and

timed, various statistics and analysis can be done, as well as graphical output or data output to

other software packages.

2. Easyest: A non-programming approach shell around the ASYST

environment, using a windowed display.

3. MatLab 386: A language environment making use of the complete capabilities of the 386 and

486 processors, in matrix notation, including a large capability in digital filtering and

transformations, with complete graphical output or data output to other software packages.

4. DADiSP: A window-oriented, non-programming approach using a lab book concept where the

data is input at the first window (or page), and the processing steps occur in subsequent windows.

Results can be output as graphs, printouts, or output to other software packages.

5. Global Lab: A Data Translation product featuring complete control of Data Translation A/D

and other I/O cards, as well as spectral analysis and other statistics.

6. ViewDAC: A multi-task managing environment specific to the 386 and 486 processor family

that provides simultaneous control over multiple A/D, D/A, and digital I/O cards, as well as

display of results or ongoing process development in a windowed display.

7. Lotus 123: Latest version of the popular spreadsheet product for analyzing experimental

results. Includes graphical output capability.

8. SlideWrite Plus: Latest version incorporating mouse and windowed displays for graphing the

results of the experiment in final, camera-ready format.

9. Golden Graphics: Latest version of Grapher (Complete 2D) and Surfer (Contours and

Topographical Surfaces), for graphing the results of the experiment in final, camera-ready format.



10. Image Processing:

A. DT-Iris: An image processing environment furnishing a complete callable library for image

enhancement, edge detection, filtering, false coloring, etc., and callable from C, Pascal, and

Fortran.

B. Image Pro: An image processing environment using pull-down menus with mouse

selection, and macro-script capability for doing repetetive operations, with edge detection,

filtering, false coloring, etc.

C. M-Shell: A C-like programming environment for complete image processing using a

Mercury Computer model MC-32-AT-IO-6 dedicated image processing card which uses the PC

as a front end. The unique features of this package are its speed and ability to do 2D FFTs of

the image.

11. Programming Languages: In addition to those already listed, the following are also available

for use in the facility's PC's:

A. Microsoft C

B. Microsoft Pascal

C. Borland TurboPascal

D. GWBasic

12. Network Links: The facility PC's are linked via EtherNet to the Observational Science

Branch Local Area Network to allow further data exchange and processing both locally and

remotely.

5.4 Other Processing

In support of direct data processing, other processing is available as follows.

1. Word Processing: Two major packages are available to support the reporting of results in

scientific journals.

A. WordPerfect: Latest version. All major functions of general word processing packages.

B. MASS- 11: Latest version. All major functions of word processors with the added capability

of easily including equations of every complexity within the text and viewed directly within the

text on the processing screen.

2. Data Base: The latest version of Borland Paradox 386 is available for use.

3. Workstation: A Silicon Graphics IRIS Indigo workstation linked to the local network and

gateway is available for more complicated image processing and wavelet analysis.
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5.5 Utilities

Several utilities are available to support the operation of the facility personal computers.

1. Brief: Latest version of the popular full-featured programmer's editor.

2. Norton Utilities: Latest version of the popular disk support

utilities.

3. XT Pro Gold: Latest version of the disk support utility, with new archiving features.

4. Communication Support: Latest versions of the popular communication packages:

A. CrossTalk XVI

B. ProComm Plus

C. Kermit

D. Network Links

E. Carbon Copy Remote PC Control

6. SPECIAL TEST CAPABILITY

Because of the full control of conditions, timing, and repeatability that is possible with the

present facility, transient phenomena can be studied by repeating the process until an adequate

amount of data is obtained for an ensemble average. Additionally, the fully automated

experiments can be conducted overnight, during the normal work day, over the weekends, or

whatever schedule is necessary to acquire the data in a timely fashion. With several PC's

available, data processing can procede as soon as the data is obtained, even though further data

collection is progressing.

7. EXAMPLES OF RESULTS

A number of studies have been conducted in the facility since its construction. Some salient

results will be summarized as follows:

The Probability Structure of the Wind Wave Surface

The elevation of a given point in the ocean is the resultant of many wave components.

Dynamically, since the interactions among the different components are weak (see, for example,
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Phillips, 1977), their motions are largely regardedas independent.Consequently,under the
central-limit theorem,the probability distributionof the surfaceelevationhasbeenassumedto
be Gaussian.But nonlinearity(though small) is not zero,and its influence in the probability
structurehasbeenshownby Phillips (1961)andLonguet-Higgins(1963) to beproportionalto
the wave slope, which requires the surface elevation probability to be non-Gaussian.No
conclusivedatawere availableto supportthetheoreticalresultuntil our laboratorydatabecame
available in Huang and Long (1980). Not only was the influence of nonlinearity proved

quantitatively, but the relationship found to be

skewness = 8n §

was later confirmed by field data (McClain et al. 1982). This simple relationship provides the

possibility for determining the mean wave length of the ocean waves from altimeter data, as

demonstrated by Walsh (1979).

In addition to the elevation probability, the joint elevation-slope probability is of great importance

for remote sensing applications, particularly for altimeter data reduction, and electromagnetic bias

correction. In a later study by Huang et al. (1984), a closed form non-Gaussian joint

elevation-slope density function was proposed and verified by laboratory data. Comparisons

between theoretical and experimental results are presented in Figure 5. A .special case of this joint

density function is the joint specular point-elevation density, which is the basis for altimeter

height determination. The result can be seen in Figure 6. With these studies, the performance of

an altimeter can be thoroughly evaluated.

The Sea State Effects:

Air-Sea Momentum Flux

Scatterometer Algorithm

As the wind blows over the ocean, energy and momentum from the wind are transmitted to the

ocean across the interface. Waves are inevitably generated, which represent the most energetic

motions at the surface layer of the ocean. In fact, a large portion of the energy is first transferred

to the waves, which in turn then transfers it further into the ocean through wave breaking (Huang

1986). Waves of different scales constitute the surface roughness structure which actually controls

the energy and momentum fluxes (Geemeart and Plant, 1990). Up until very recently, the role

of waves in the air-sea interaction has totally been neglected.

Back in the early 1980's, we conducted a series of experiments to investigate the role of waves

in determining the fluxes across the air-sea interface. Such studies are important not only for the

fluxes, but also crucial for the scatterometer algorithm. In our studies, we reached the following
conclusions:

(1) The drag coefficient is a function of the sea state. The drag coefficient relates the wind

speed to the wind stress, which is also the flux of momentum. It can be shown that the drag

coefficient is a function of a roughness length scale.
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The formula we developedis

m I

= (p-2)!J _'

where Xo =(2_g)/(u.n0), from Huang et al. (1986). Clearly, from this formula the drag coefficient
will be a function of the sea state.

(2) The development of the surface roughness structure is not monotonic. The design of the

satellite scatterometer is based on the backscattering of off-nadir radar pulses by the selective

Bragg scattering mechanism. Earlier measurements of the ocean microwave backscattering

coefficient suggested that it was related to the wind speed by a power law expression, such as

0 0 = a U p ,

where tx and ]3 are empirically determined constants. Data from Seasat-1, however, suggested that

there was systematic bias in using such a simple model for the basis of the algorithm. Our

laboratory data show that the development of the ocean surface roughness is much more

complicated. The relationship between the backscattering coefficient and the wind speed can be

highly non-linear. It cannot be simplified to a simple power law. In fact, the relationship can be

non-monotonic sometimes. Our ongoing study also suggests that the variation is a function of the

pre-existing sea state. Based on this finding, we believe that the algorithm for the scatterometer

needs to be re-defined. This statement represented only a minority view when we first published

our result in 1984 (JGR 89). But now, however, it has become a generally accepted statement
in the air-sea interaction community (Brown, 1990).

Wave-Current Interactions

Wave-current interaction remains as one of the least understood wave dynamic phenomena. The

most interesting and crucial consequence of the wave-current interaction is the blocking

phenomenon, the condition when the wave is stopped at the point where the local current is

larger in magnitude than the group velocity, but opposite in direction to the wave propagation.

According to the accepted theory, the wave motions are governed at all times by the kinematic

and dynamic conservation laws. Under the steady state condition, the blocking point becomes a

mathematical singularity, for when the sum of Cg + U becomes zero, the action of the waves will

have to increase without bound in order to maintain their product constant. Consequently, the

energy of the waves will increase drastically, and, at the same time, the length of the waves will

decrease correspondingly to maintain the constancy of the frequency and the action flux. If events

were indeed following this description, a logical sequence would be that the waves should break

violently long before the waves reached this singular point. Indeed, blocking has been proposed
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asa principle to constructartificial breakwaters(Taylor, 1955).

Basedon a recentstudy,we haveestablishedthat it is possibleto havenon-breakingblocking
whenwavesarepropagatingagainststrongcurrents.Our resultsoffer qualitativeproof that the
wave action is indeed reflected as predictedby the theory of Shyu and Phillips (1990);
quantitativeproof, however,is still wanting.

The consequenceof the reflection causedby non-breakingblocking could have important
applicationsin remotesensingdata interpretations.The classicwave-currentinteractiontheory
stipulatesthat at blocking the wavenumbercanonly becompressedby a factorof four. In the
newreflectiontheory,however,thewavenumbercanchangefrom theoriginal valueall theway
into thecapillaryrange,thecompressionratio thusbeingalmostopenended.Furthermore,in the
classictheory, the wavenumbercompressionoccursonly nearthe immediateneighborhoodof
thecritical point; while in thenewreflectiontheory,thewavenumbercompressioncould occur
over a large region spanningthe initial blocking point and the secondaryblocking point, and
beyond.For example,a 1 m/s currentcancausea 2.5m long wave to reflect and be trapped.
According to theclassictheory,though,the minimumwavelengthat the blocking will only be
64 cm,which is still too longfor mostmicrowaveradarsto sense.But thenewtheorywill allow
wavesto exist ranging from the original wavelengthdown to capillary wavesover the current
gradientregion,andthusoffers a muchbetterchancefor microwaveradardetection.This is, in
all probability, the real mechanismfor the imageformation for the SyntheticApertureRadar
(SAR) overmanygeographiclocationsasreportedby Fu andHolt (1984).

Otherthanits effectson SAR, this surfaceroughnessgeneratingmechanismcanalsoinfluence
the performanceof the scatterometer,which relies on the generatedroughnesssatisfying the
Braggcondition to infer oceansurfacewind. Over theglobal ocean,the currentsin the strong
boundarycurrentsystemscancertainlychangethe wavefield asdiscussedearlier.This change
can causeerrors in the presentlyusedscatterometeralgorithms.To excludethe current in the
wind measurementis a possibleway to avoidtheerror,asis thepresentpractice.But themajor
currentsystemsometimescoincideswith theexplosivegrowthof thenearcostalstorms.Forthat
reason,monitoringthe wind stressover thecurrentsystembecomesan importanttask.In order
to beableto do sooveranycurrentsystem,theunderstandingof theprocessesof wave-current
interactionis indispensable.Therefore,themechanismof wave-currentinteractionreallydeserves
morestudyfrom a remotesensingpoint of view.

Spectral Properties

Based on laboratory study and published field data, we have proposed a unified two-parameter

wave spectral model for a generalized sea state, known as the Wallops Spectrum. The inputs for

the spectrum are the peak frequency and the rms wave elevation. With these two parameters, one

can compute the significant slope, §, defined as

§ = (rms elevation)/(wave length at spectral peak).
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Typical casesof modelcomparisonswith field dataareshownin figure7. Thefiguresshowthat
theWallopsspectrumcancorrectlymodelthepeakenhancement,eventhoughit is notexplicitly
invokedin thespectralmodel.Basedon theWallopsspectralmodel,we alsofound thatthe two
most important undeterminedcoefficients (the Phillips constantand the peak enhancement
function) in thepopularJONSWAPspectrumcanbe parameterizedby the significantslope( §
). The Phillips constantis definedby theconstancyconditiongiven as

(-_ = f,, An) tin,

which is the definition of the power spectrum. This equation, however, gives us an equation of

the Phillips constant from the Wallops spectral model. The result of comparisons with observed

data from both laboratory and field is shown in figure 8. The goodness of fit is beyond doubt.

The comparisons of the peak enhancement function with the various parameterization schemes

are shown in figures 9a, b, and c from Huang et al. (1990). The traditional parameterization using

either non-dimensional fetch or the non-dimensional wind could not model the trend of the peak

enhancement function at all. The significant slope as the parameter, on the other hand, can indeed
reduce the scattered data into a coherent trend.

Benjamin-Feir: The Nonlinear Dynamics of the Wind-Wave Interactions

The weak resonant nonlinear wave-wave interaction is the cornerstone of the modern wave

theory. One prima facie evidence of the effects of such interaction is the Benjamin-Feir

instability, which predicts the modulational instability of a Stokes wave train. The existence of

the Benjamin-Feir instability has been reported time and time again from laboratory data, but

conclusive evidence from the field has never been found. In a study of the wind-wave interaction,

we found that the surface wind can actually suppress the Benjamin-Feir instability and stabilize

the wave train. Figure 10 shows the effect of wind on the development of the instability. If

further analytic study conf'Lrrns this observation, the lack of field evidence for the Benjamin-Feir

instability can be finally resolved, for over the open ocean there are always winds of various
magnitudes.

Wind-Wave Initialization

Wind wave initialization has been at the center stage of air-sea interaction studies for many years.

But it remains an unsolved problem. Existing theories of wind wave generation of water waves

do not properly address waves at this crucial stage. A brief summary of some of the most popular

theories are given as follows to illustrate this point:

a. Miles Theory: The Miles theory is based on a shear instability mechanism. This mechanism

requires the existence of a wavy surface to form the matched layer. Therefore, the theory will
not be used to predict the initialization of the waves from a fiat water surface. Furthermore, for
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the Miles instability to work effectively, the matchedlayer thicknesshas to coincidewith the
wind profile atits maximumcurvature.Consequently,theMiles theoryis themosteffectivewhen
the ratio of the wind speedto that of the dominantphasevelocity is around10.Both of these
restrictionsrendersthe Miles mechanismto bea wind waveinteractionratherthanageneration
mechanism.

b. Phillips Theory: The Phillips theory is based on a resonant mechanism between the pressure

pulsation in the wind with that of the underlying waves. The theory proposes an initial value

problem of no waves on the water surface. Thus theoretically, it can indeed be applied to the
initialization of the waves. But the resonant condition requires the matching of the phase velocity

and the wind component in the direction of the wave propagation. A requirement like this

essentially excludes the small scale waves in the centimeter range that are observed as the first

roughness elements on the wind-blown water surface.

c. Kelvin-Helmholtz Theory: The Kelvin-Helmholtz instability is based on the inviscid shear

current instability. It correctly predicts the wave length of the most unstable wave on the water

surface. But the shear waves have a phase velocity too low to match the free wave propagation.

In our laboratory study, we have established that the initial stage of the waves are indeed in the

capillary-gravity range as predicted by the Kelvin-Helmholtz theory. But the phase velocity is

much higher than their predicted value. The growth rate of the wave energy is also too high to

be accounted for by any of the existing theories.

In the initial stage, the waves successively go through several stages starting from a regular

waves to chaotic, and then returning to regular. Such behavior strongly suggests highly nonlinear

transitions of modes. This problem is still under active investigation.

In addition to joint research projects with Harvard University, Columbia University, the

University of Delaware and the Johns Hopkins University where the facility supported graduate

research in the various Ph.D programs, the following articles in refereed journals resulted.

1976

1. On the variation and growth of wave-slope spectra in the capillary-gravity range with

increasing wind. S. R. Long and N. E. Huang, J.Fluid Mech., 77, 209-228.

2. Observations of wind-generated waves on variable current. S. R. Long and N. E. Huang, J.

Phys. Oceanogr., 6, 962-968.

1980

1. An experimental study of the surface elevation probability distribution and statistics of

wind-generated waves. N. E. Huang and S. R. Long, J. Fluid Mech., 101, 179-200.
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1981

1.A unified two-parameterwavespectralmodelfor a generalseastate.N. E. Huang,S.R. Long,
C. C. Tung, Y. Yuen,andL. F. Bliven, J. Fluid Mech., 112, 203-224.

2. On the importance of the significant slope in empirical wind-wave studies. N. E. Huang, S.

R. Long, and L. F. Bliven, J. Phys. Oceanogr., 10, 569-573.

1983

1. A non-Gaussian statistical model for surface elevation of nonlinear random wave fields. N. E.

Huang, S. R. Long, C. C. Tung, Y. Yuan, and L. F. Bliven, J. Geophys. Res., 88, 7597-7606.

2. A study on the spectral models for waves in finite water depth. N. E. Huang, P. A. Hwang,

H. Wang, S. R. Long, and L. F. Bliven, J. Geophys. Res., 88, 9579-9587.

1984

1. A new type of overshoot phenomenon in wind wave development and its implication in remote

sensing of the ocean. N. E. Huang, C. L. Parsons, S. R. Long, L. F. Bliven, and Q. Zheng, J.

Geophys. Res., 89, 3679-3687.

2. The non-Gaussian joint probability density function of slope and elevation for a nonlinear

gravity wave field. N. E. Huang, S. R. Long, L. F. Bliven, and C. C. Tung, J. Geophys. Res., 89,
1961-1972.

3. The harp probe: an in situ Bragg scattering sensor. E. Mollo-Christensen, N. E. Huang, L. F.

Bliven, and S. R. Long, J. Atmos. Oceanic Tech., 1,358-371.

1986

1. Experimental study of the influence of wind on Benjamin-Feir sideband instability. L. F.

Bliven, N. E. Huang, and S. R. Long, J. Fluid Mech., 162, 237-260.

2. An experimental study of the statistical properties of wind-generated gravity waves. N. E.
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9. LIST OF FIGURES

Figure 1. The main research tank at the NASA Wallops Flight Facility.

Figure 2. The specialized wave-shear current interaction research tank at NASA Wallops Flight

Facility.

Figure 3. The proto-type laser device for instantaneous slope of the wave surface.

Figure 4. The 5 tube Pitot array for instantaneous frictional velocity and wind profiles.

Figure 5. Comparison of theory and measurement: The joint elevation-slope probability density.

Case a: significant slope = 0.0068 ; Case b: significant slope = 0.0203; Case c: significant slope

= 0.0323. The density contours become increasingly nongaussian as the values of significant

slope increase.

Figure 6. Comparison of theory and measurement: The elevation-spectral point (slope=0) joint

probability density, for the same cases as in figure 5.

Figure 7. The comparison of the Wallops two-parameter spectral model with other models for

the power spectral density. Wallops spectrum (- ), JONSWAP spectrum (--.--.--,),

Pierson-Moskowitz spectrum ( ....... ), and the field data ( __ ). (a) Argus Island, no=0.133 Hz,

T = 0.01145; (b) W.Atlantic, no = 0.093 Hz, T = 0.00815; (c) Hurricane Ava, no = 0.087 Hz,

T = 0.0072; (d) Hurricane Camille, no = 0.068, T = 0.00625.

Figure 8. (a) The variation of the equilibrium range coefficient, b, with the significant slope, T.

(b) The variation of the equilibrium range coefficient, b, with the non-dimensional fetch, gx/u*2.

Data references given in Huang et al. (1981).

Figure 9. Comparison of peak enhancement function, g, of various parameterization schemes with

the Wallops model: (a)g vs. the external variable, nondimensional fetch (b) g vs. the coupling

variable, nondimensional frequency (c) g vs. the internal variable, the significant slope, T.

Figure 10. Wind suppression of the Benjamin-Feir instability. Data from Bliven et al. (1986).
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